
Efficient Buffer Overflow Detection In Virtualized
Clouds Using Intel EPT-based Sub-Page Write

Protection Support
Stella Bitchebe

1
, Yves Kone

2
, Pierre Olivier

3
, Jalil Boukhobza

4
, Yérom-David Bromberg

5
, Daniel

Hagimont
2
, Alain Tchana

6

1
Université Côte d’Azur,

2
University of Toulouse,

3
University of Manchester,

4
ENSTA Bretagne,

5
University of Rennes,

6
Grenoble INP

1 Background and Motivation
For decades, the widespread usage of memory-unsafe lan-

guages like C and C++ raised the threat of security-related

memory corruption errors representing vulnerabilities that

attackers can exploit to execute malicious code, tamper with,

and/or leak critical data. Google developers recently revealed

that 70% of Google Chrome’s bugs are related to memory

management. Microsoft alsomade a similar observation. This

paper focuses on buffer overflow, ranked the top vulnerabil-

ity in 2022 by SANS Institute.

Allocators targetting buffer overflow mitigation must an-

swer an important question: How to detect and prevent an
overflow? Two common techniques have been studied to

answer this question: canaries and guard pages. Canaries are

small 1-byte magic values located after a buffer and checked

to detect overflow. They have a modest memory overhead

but can only detect overflows asynchronously, i.e., when

the value is checked. Guard pages are unmapped pages in

the virtual address space, located after a buffer. Overflowing

the buffer will trigger a fault if the page is hit. Guard pages

offer better security guarantees vs. canaries, as they prevent

overflows through synchronous detection but at the cost of

significant memory consumption. We measured up to 80×

memory overhead, with the SlimGuard allocator, for the

PARSEC-freqmine application with guard pages.

Only a few allocators (or even improvements of existing

allocators) have been developed with the primary goal of re-

ducing the memory overhead while preserving other impor-

tant properties such as security and performance. Some allo-

cators, such as OpenBSD, Cling, and DieHarder, attempted to

reduce the memory footprint of linked list-basedmetadata by

using bitmaps. However, they lead to significant performance

degradation when the allocator performs randomization, a

popular security guarantee technique. Hardware solutions

have also been introduced to address buffer overflow. We

can underline CHERI (the most recent one), which doubles

pointer size to include the bounds to the pointed buffer. This

way, the hardware can check bounds violations. Such hard-

ware solutions overcome buffer overflow. However, they

include several limitations, mainly related to performance

degradation, unpredictability, and the need to rewrite appli-

cations (which limits their adoption).

2 Contributions
LEGACY APPLICATION

Class X, GP Class Y, GN
LEANGUARD-sha

F

VMA VMA SPP

            F,Y

Native-buddy LEANGUARD-buddy

20 2n P1 Pm

kswapd

LRU-inact
LRU-activ

LEANGUARD-Clean

LRU-Pi
LRU-used

Hypervisor

EPT SPPT

PF PF

2 4

1

6.a

mem_release

SPP enable

6.b

SPP 

disable

6.c

3 5

0

Figure 1. Architecture of Lean-

Guard.

In this paper, (1)

we introduce Gua-

Nary, a novel type

of safety guard for

virtualized cloud-

based applications.

GuaNary provides

the same security

guarantee as guard

pages against write

overflowswhile dras-

tically reducingmem-

ory overhead and

with negligible performance overhead. GuaNary leverages a

recent Intel hardware virtualization feature called Sub-Page

Write Permission (SPP). SPP reduces write-protection gran-

ularity to 128B (called a sub-page) instead of 4KB. SPP was

initially introduced to help hypervisors accelerate virtual

machine’s (VM) live migration/checkpointing. In this pa-

per, we repurpose SPP for security and make it exploitable

by unprivileged VMs without breaking isolation between

them. (2) We design LeanGuard (Figure 1), a system that

exemplifies GuaNary in popular system software stacks.

(3) We thoroughly evaluate LeanGuard using micro- and

macro-benchmarks (PARSEC applications), demonstrating

its benefits.

3 Key Results
Our evaluation results show that LeanGuard, with the same

memory consumption, can protect 25× more buffers com-

pared to SlimGuard (that has already proven more efficient

than recent state-of-the-art secure allocators). Inversely, to

protect the same amount of buffer as SlimGuard, GuaNary

requires about 8.3× less memory.

4 Main Artifact
We build LeanGuard by modestly extending the Xen hy-

pervisor, the Linux kernel, and the SlimGuard secure allo-

cator. The source of LeanGuard and all the artifacts are

publicly available at https://github.com/bstellaceleste/OoH/
tree/SPML/OoH-SPP.

https://github.com/bstellaceleste/OoH/tree/SPML/OoH-SPP
https://github.com/bstellaceleste/OoH/tree/SPML/OoH-SPP

