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1 Introduction
The increase of deep learning models and dataset sizes make
training time-consuming, while heavy communication, pri-
marily due to gradients synchronization as a key bottleneck.
Sapio et al. [7] show that communication can take up to 90%
of a training iteration. A popular remedy is to reduce the
size of communication data between nodes by applying gra-
dient compression methods [1, 3, 6, 8, 9, 11]. Unfortunately,
a majority of the proposed compressors are not natively
compatible with the AllReduce collective communication
primitive because of the change in data format and the need
for custom reduction operations. To the best of our knowl-
edge, the only compressors compatible with AllReduce are
PowerSGD [10] and IntSGD [5, 7]. However, practical im-
plementations of these methods are heuristic-based and do
not come with rigorous theoretical guarantees. Concurrently,
C-Coll [4] proposes error-bounded lossy compression with
MPI collectives.We address this question: canwe provide the-
oretical guarantees for gradient compression while retaining
AllReduce compatibility for an efficient implementation?

2 Global Quantization
Our main contribution is a new compressor, Global Quan-
tization (G-Q), which quantizes 32-bit floats to smaller bit-
widths utilizing the norm of the global gradient such that the
quantized data is AllReduce-compatible. Assume gradient 𝑥 ,
we define G-Q as follows.
The global quantization operator with respect to the 𝑝 norm and
𝑠 levels

0 = 𝑙𝑠 < 𝑙𝑠−1 < 𝑙𝑠−2 < · · · < 𝑙1 < 𝑙0 = 1,

denoted G-Q𝑞,𝑝

𝑙
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where 𝜉𝑖 (𝑦𝑖 ) is an independent element-wise random rounding
operator such that
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for 𝑗 ∈ [𝑑], where 𝑢 𝑗
𝑖
∈ {0, 1, 2, . . . , 𝑠} is such that 𝑙
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We adopt two ways to cut the quantization intervals 𝑙 :
• Standard Dithering, with linear levels, i.e., 𝑙𝑖 = 𝑠−𝑖/𝑠.
• Exponential Dithering [3], with exponential levels,
i.e., 𝑙𝑠 = 0 and 𝑙𝑖 = 1/2𝑠−𝑖 for 𝑖 ∈ {1, . . . , 𝑠}.1

Standard dithering is intrinsically linearly divided, and so
can be aggregated directly using a fixed-point reduction op-
eration in existing AllReduce implementations. We also pro-
pose a custom reduction operation for exponential dithering,
which does not require dequantization. Thus, compressed
data can be reduced through AllReduce primitive with the
compression ratio up to O(

√
𝑛𝑑), where n is the number of

computing nodes and d is the data size. On the other end,
traditional quantization methods have to utilize AllGather
whose compression ratio can only reach O(

√
𝑑). We theoret-

ically prove that global quantization is unbiased (i.e., error
feedback is not required) and with bounded variance. We
show that existing works with an unbiased compressor with
bounded variance can seamlessly extend to global quantiza-
tion with the same rate of convergence.

3 Evaluation
We implement G-Q as a drop-in module for PyTorch DDP
through a Python extension with CUDA offloads. We run
experiments in a server with 4 A100 GPUs communicating
via both NVLink and PCIe; we observe that our algorithm is
beneficial even with the extremely fast NVLink. We also run
large-scale validation in Google Cloud Platform (GCP) with
64 servers each equipped with 1 A100 GPU. Figure 1 shows
that global quantization reaches 3.16× training speedupwith-
out loss of accuracy for the DeepLight model [2].
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Figure 1. 10 epochs of DeepLight training behavior in GCP.

1We can work with any basis. We use base 2 for simplicity and the fact that
this is naturally compatible with the binary representation of floats.
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