
Understanding storage I/O pa�erns
through system call observability

Tânia Esteves, Ricardo Macedo, Rui Oliveira and João Paulo
INESC TEC & University of Minho

INTRODUCTION
Users and developers often encounter performance, correct-
ness, and dependability issues in their applications that are
hard to diagnose and take considerable time to debug.

Existing tools that can assist users in this process have sev-
eral limitations. First, they often require instrumenting the
applications’ source code [1]. Secondly, many of these tools
only cover the data collection step, delegating the analysis
and visualization of traced data to users[2]. Moreover, solu-
tions that provide a complete analysis pipeline are designed
for rigid analysis scenarios (e.g., security, distributed sys-
tems’ causality), lacking the �exibility to perform di�erent
and customized analyses [3].
In this work, we introduce a �exible and practical tool

that allows users to transparently and non-intrusively trace,
analyze and visualize applications’ I/O system calls in near
real-time while imposing reduced performance overhead for
targeted applications.

DESIGN OVERVIEW
We propose a generic tool for diagnosing the I/O interactions
between applications and in-kernel POSIX storage systems.
Its design consists of three main components: the tracer,

the backend, and the visualizer. The tracer uses eBPF technol-
ogy to intercept syscalls from applications non-intrusively
(i.e., without source code instrumentation), collecting their
information (i.e., type, arguments, return value) and enrich-
ing it with extra context from the kernel (e.g., �le type, o�set).
As soon as data is captured, it parses and forwards it to the
backend without requiring manual user intervention. Users
can then access the traced syscalls through the backend and
visualization components in near real-time, apply �lters to
get speci�c data, and build correlation algorithms and cus-
tomized visualizations (e.g., histograms, time-series plots).

By o�ering an integrated solution that intercepts syscalls,
enriches collected data with relevant context, and provides
timely analysis and visualization, our tool facilitates the anal-
ysis and enables near real-time visualization of complex I/O
patterns for data-intensive applications.

RESULTS
Wevalidated the usability of our frameworkwith four production-
level applications. The results show that our framework en-
ables the diagnosis of: i) ine�cient use of syscalls that lead

to poor storage performance in Redis; ii) unexpected �le ac-
cess patterns caused by the usage of high-level libraries that
lead to redundant I/O calls in Elasticsearch; iii) resource con-
tention in multi-threaded I/O that leads to high tail latency
for user workloads in RocksDB; iv) erroneous �le accesses
that cause data loss in Fluent Bit.
Importantly, these I/O patterns are observable without

resorting to code instrumentation or needing to manually
combine multiple tools.

Experimental results show that the proposed tool can col-
lect, parse, and forward to the analysis pipeline all the re-
quired information while imposing reduced performance
overhead. Speci�cally, compared to the vanilla version where
the targeted application runs without any tracer, our tool
increases execution time to no longer than 1.38x for the most
I/O intensive application (RocksDB).

FUTURE DIRECTIONS
In future work, we aim at further simplifying the diagnosis
of applications for users by providing a richer collection of
prede�ned correlation algorithms at the backend, which can
be used to automate the detection of key I/O patterns. As
examples, we could devise algorithms to quickly identify
the ine�cient behaviors observed in the aforementioned
applications, namely for: i) �nding sequences of syscalls
repeated multiple times for a given �le; ii) �nding redundant
operations, such as opening and closing a �le for every write.

Further, we intend to use our tool to assist research in other
scopes, such as security. For instance, the proposed tool could
be used for analyzing the storage I/O patterns performed by
malware. Such analysis would reveal how di�erent malware
families interact with the storage system, allowing users to
compare them and �nd distinctive I/O behavior that could
be used to build or improve malware detection tools.

REFERENCES
[1] 2022. Jaeger: open source, end-to-end distributed tracing. Retrieved

November, 2022 from https://www.jaegertracing.io
[2] Ibrahim Umit Akgun, Geo� Kuenning, and Erez Zadok. 2020. Re-

animator: Versatile high-�delity storage-system tracing and replaying.
In 13th ACM International Systems and Storage Conference. ACM, 61–74.

[3] Iman Kohyarnejadfard, Daniel Aloise, Michel R Dagenais, and Mahsa
Shakeri. 2021. A framework for detecting system performance anom-
alies using tracing data analysis. Entropy 23, 8 (2021), 1011.

https://www.jaegertracing.io

	References

