
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

GPC: Compiler-based Optimization for Sparse
Computations in Graph Neural Networks

Yue Jin, Yongchao Liu
Ant Group, China

As the major performance bottleneck, sparse computation ac-
celeration is crucial for highly performant graph neural net-
work (GNN) learning. Recent proposals have mainly focused
on optimizing coarse-grained parallelism associated with
nodes, edges, and additional feature dimensions; however,
important systematic factors such as shared memory tiling,
register tiling and load imbalance are vastly overlooked on
complex modern DNN accelerators like GPUs. Furthermore,
most of these existing optimizations heavily rely on experts’
manual engineering e�orts which involve much trial and
error. To tackle these challenges, we propose GPC, a new com-
piler framework that extends the popular Halide compiler
to enable the e�ective acceleration for sparse computations
for GNNs via compiler-based sparse computation optimiza-
tions and cost model based autotuning. Extensive evaluation
against highly-optimized state-of-the-art sparse computa-
tion kernels and on end-to-end GNN training and inference
e�ciency has demonstrated that our proposed GPC achieves
an up to 3.37⇥ speedup over the state-of-the-art sparse ker-
nels, and a training and inference speedup of 1.44⇥ ⇠ 2.33⇥
over three popular GNN frameworks including GCN, Graph-
SAGE and GAT, with a single Tesla V100 GPU.
Introduction: In GNNs, data is stored in the form of

a graph structure, and feature propagation is carried out
through this graph structure. Given a graph ⌧ (+ , ⇢) with
node set + and edge set ⇢, let -D denote the feature of node
D 2 + , and .4D,E the feature of edge 4D,E 2 ⇢, with D as the
source node and E as the destination.
De�ne the representation of the output node /E as /E =

�D2# (E) (-D � .4D,E ) , where# (E) is the set of inbound neigh-
bors of E , � is a customized operator, and � is a customized
aggregating operator over # (E). Given that the operation
is between a sparse matrix .4D,E and a dense matrix -D , the
computation of /E corresponds to a Sparse Matrix-Matrix
Multiplication (SpMM) when � is an add operator and � is
a sum operator. In contrast, the representation of the output
edge is de�ned as /4D,E = ;⌘B � A⌘B , where � is a customized
operator, and inputs ;⌘B and A⌘B can be any of -D , -E and
.4D,E . Given that the output is a sparse matrix with edge fea-
tures, the computation of /4D,E is a Sampled Dense Dense
Matrix Multiplication (SDDMM) when � is a dot operator.
Motivation: It is well-known that SpMM- and SDDMM-

like operations are primary operations in GNNs. However,
in practice, graph sampling operations are often observed
to dominate the runtimes of GNN training. Typically, two
approaches are widely used to remove or hide the overhead

of graph sampling. One is to generate subgraph examples
beforehand and store them in disk for future use in train-
ing/inference. The other is to exploit parallel data prefetching
in data loaders. In these cases, the SpMM- and SDDMM-like
operations become the bottleneck of improving GNN learn-
ing speed, motivating us to accelerate them in this paper.

Implementation: We describe SpMM-like and SDDMM-
like algorithms and the corresponding schedules using our
extended GPC DSL for CUDA-enabled GPUs. For SpMM-like,
we introduce the bu�er bound inference technique to enable
the 2-D shared memory optimization, the bu�er binding in-
dex expression to enable the load balancing optimization,
and the 1-D stride register tiling to optimize data reuse at the
register level. The format to represent the adjacent sparse
matrix in SpMM-like is the CSR format. First, the bu�er
bound inference technique pre-loads the sparse matrix into
the shared memory and reuses the data to reduce the global
memory access. Second, the bu�er binding index expres-
sion binds the node of graph, so that the GPC compiler can
schedule the GPU blocks to speci�c nodes with the speci�c
number of neighbors to optimize the balance problem of
sparse matrix computations in GNNs. Finally, the 1-D stride
register tiling computes multiple outputs in registers, so that
we can reuse the data in registers from the sparse matrix.

For SDDMM-like, we use the COO format, and apply the
adaptive warp shu�e optimization. Warp shu�e functions
use registers, instead of shared memory or global memory,
for thread communication within a warp. We assign a spe-
ci�c number of edges to a block, use multiple threads for
computing features to intermediate results, and apply adap-
tive warp shu�es to reduce intermediate results in registers.
We also introduce a cost model based autotuning with

an extensive search space to automatically search for opti-
mal results. Our cost model is a simple and trainable DNN.
The �rst layer of our model structure is a log function,
the second layer is a batch norm followed by three dense
layers, and the last layer is a normalize layer. The loss
is calculated using mean squared error. The real data is
normalized to better re�ect the true trend, making ;>BB =
"(⇢ (~?A4382C43 ,=>A<0;8I4 (~)). A set of metrics representing
parallelism, along with GPU block tiling size, shared memory
tiling size, register tiling size, and adaptive lane size of warp
shu�e, are used to form the search space. In our experiments
the tuning process takes 2 ⇠ 27 seconds. Moreover, Pear-
son correlation coe�cient shows strong linear relationship
between our model predictions and real GPU observations.

1


