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1 INTRODUCTION
Training machine learning models at the edge has become increas-
ingly popular given the decentralized nature of data and the issues
with data privacy. Referred to as “Collaborative Learning" (CL), such
training at the edge takes the form of Federated Learning (FL) [3]
or Decentralized Learning (DL) [2] where edge devices train on
their local data and learn by exchanging models. The outcome of
this learning is a global model that is used to perform inferences in
real deployments.

While most current research has focused on several aspects of
collaborative learning, the ultimate goal has always been inference.
The potential use of collaboration solely for the purpose of inference
has largely been overlooked. In this work, we consider the problem
of “Collaborative Inference" (CI) in its own light and demonstrate
that CI can be as competitive as CL at extremely low-cost. We
emphasize that while CL has become a go-to solution for most
tasks, organisations today should (re)consider and bene�t from low
cost and performant paradigm of CI.

2 CI DEFINITION & METHODS
We begin by formally de�ning collaborative inference as the follow-
ing task. Suppose that we are given a set of" models c1, c2, . . . , c"
that are respectively trained on local datasetsD1,D2, . . . ,D" sam-
pled from a common space X ⇥Y. The goal of collaborative infer-
ence is to �nd a function 5 : Y" ! . that best aggregates individ-
ual inferences from the models {c8 }"8=1 to maximize performance
on the datasetD⇤ 2 X⇥Y. Typically the local data distributionsD8
are heterogeneous across nodes. Next we identify some methods for
performing CI aggregation. We classify the methods as training-free
and training-required methods depending on whether the method
needs to be trained. The �rst two methods below are training-free
while last two are training-required.

(1) Averaging – aggregate inferences using simple mean.
(2) Weighted Averaging – incorporates a weighted scheme

based on number of classwise training samples.
(3) Polychotomous Voting – optimal voting rule that maxi-

mizes bene�t based on Bayesian expectation maximization.
(4) Neural network (NN) – our approach is to model 5 as an

arbitrary function that can be learnt by a neural network.

3 COST COMPARISON TO CL
Since nodes in CL exchange large models with the server for several
communication rounds, CL incurs signi�cant communication costs.
On the other hand, when training 5 for CI, nodes must send only
the inferences to the server, incurring very low communication cost.
Additionally, for training-free aggregators 5 , no communication
cost is incurred. However, CI must store all " local models to
perform inference during production as compared to one �nal
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Figure 1: CI is very competitive with CL when the data is
highly heterogeneous or non-IID (U = 0.05 and U = 0.1).
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Figure 2: CL needs 67⇥more communication than CI.

model in CL, thus requiring M times more memory than CL during
production.

4 PRELIMINARY RESULTS
We present results on the CIFAR-10 dataset with" = 20 nodes. Fig-
ure 1 charts the accuracy across di�erent values of heterogeneity for
CL using the F��A�� algorithm [3] and CI using the NN approach.
Figure 2 charts the corresponding communication costs. The data is
distributed heterogeneously using the Dirichlet approach [1]. Our
results validate that CI can achieve competitive accuracies with CL
while saving 67⇥ in communication under realistic non-IID data
distributions.
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