
Trustworthy Board Management Software
Daniel Schwyn

ETH Zurich

Zurich, Switzerland

Ben Fiedler

ETH Zurich

Zurich, Switzerland

Roman Meier

ETH Zurich

Zurich, Switzerland

Michael Giardino
∗

ETH Zurich

Zurich, Switzerland

David Cock

ETH Zurich

Zurich, Switzerland

Timothy Roscoe

ETH Zurich

Zurich, Switzerland

Most modern computing platforms are so complex that they

need a separate embedded system to manage them. These

systems are referred to as (Base-)Board Management Con-

trollers or BMCs. BMCs handle power and clock sequencing,

and manage firmware for other components on the board.

Furthermore, they usually offer remote management capabil-

ities (e.g. console and firmware updates) over remote shells

or web-interfaces. This collision (combination?) of absolute

power, implicit trust and exposure to (the outside) makes

BMCs simultaneously the root of trust and a significant

threat vector.

Traditionally, BMC software is proprietary, closed-source

firmware with no way to independently inspecting it for

correctness, and which frequently exhibits security vulnera-

bilities. Open-source projects like OpenBMC or u-BMC are

a step in the right direction, but still fall short of the high

requirements for their security (e.g. CVE-2019-6260, CVE-

2020-14156, CVE-2023-25507).

Moreover, addressing these system security concerns is

meaningless if the BMC does not manage the system safely.

This challenge starts with simply powering up the system:

the power and clock distribution networks must be config-

ured correctly and in the right order. Getting this power

sequence wrong, or failing to react appropriately to runtime

faults like over-temperature can destroy expensive hardware.

We experienced these challenges first-hand when engi-

neering the firmware stack for Enzian[1], a heterogeneous

platform for systems research. The lack of published liter-

ature on board management software design led us to con-

clude there is, as yet, no principled approach to BMC design.

To address these challenges, we developed a declarative

model for power networks and can synthesize correct power

sequences from these models [3]. Furthermore, we are inves-

tigating regulator driver synthesis for correctly executing

such a generated sequence. This comprises work on model

checking specifications of I
2
C stacks but also generating C

code, and even hardware implementations of I
2
C controllers

∗
Now at Huawei Research

Eurosys’23, May 8–12, 2023, Rome, Italy
2023.

from these specifications [2]. The goal is to generate as much

of the power management software as possible from mod-

els. We are confident that this approach generalizes to other

BMC tasks like firmware management.

However, the safety properties of our service stack must

be preserved even in the presence of untrusted BMC compo-

nents, e.g. a remote management server, and so BMC services

need to be securely isolated from each other, while still being

able to interact safely. To obtain these isolation guarantees,

we are building a high-assurance BMC stack on the solid ba-

sis of a verified separation kernel: seL4. Critical components

like the power management stack will be implemented as

native seL4 tasks while less trusted components are isolated

in VMs. This cyber-retrofit approach also allows for reusing

parts of existing BMC solutions like OpenBMC.

Building a high-assurance BMC stack with strong guar-

antees for critical components fills the dire need for safer

and more secure platform firmware in modern computing

platforms, but it also provides an excellent use-case for re-

search on how to build trustworthy systems and push their

complexity boundaries.

Validating our ideas on the Enzian platform provides us

with insight into the following research questions: (1) What

formal models of hardware allow us to generate correct soft-

ware for real systems or verify its correctness? (2) How can

communication channels be designed to preserve isolation

guarantees between participants of different trust levels in

real world computer systems? (3) How can correctness guar-

antees from hardware be extended to software, e.g. by gen-

erating an I
2
C controller from a specification extracted from

the hardware schematic?

[1] David Cock et al. “Enzian: AnOpen, General, CPU/FPGA

Platform for Systems Software Research”. url: https:

//doi.org/10.1145/3503222.3507742.

[2] Lukas Humbel et al. “A Model-Checked I
2
C Specifica-

tion”. url: https://doi.org/10.1007/978-3-030-84629-

9_10.

[3] Jasmin Schult et al. “Declarative Power Sequencing”.

url: https://doi.org/10.1145/3477039.

https://orcid.org/0000-0002-4412-9004
https://orcid.org/0000-0002-7215-9147
https://orcid.org/0000-0002-9906-720X
https://orcid.org/0000-0003-2997-6560
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6260
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-25507
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1007/978-3-030-84629-9_10
https://doi.org/10.1007/978-3-030-84629-9_10
https://doi.org/10.1145/3477039

