
Poster: Utility-driven fair throughput allocation with
latency guarantees over a shared resource pool

Giorgos Kelantonakis, Fallia Kourou, Marina Bitsaki and Kostas Magoutis
Computer Science Department, University of Crete and FORTH-ICS, Heraklion, Greece

{kelanto,kourou,marina,magoutis}@csd.uoc.gr

Abstract—In this poster we describe a two-level architecture
for achieving quality-of-service (QoS) guarantees for latency-
sensitive applications over shared resource pools. We utilize a
higher-level controller to achieve fair sharing of aggregate system
throughput using utility functions expressing each application’s
goals. A lower-level scheduler simultaneously achieves explicit per-
application latency targets in concurrent access to a shared pool
of resources. The lower-level scheduler isolates each application
from others that may exceed their load specifications (average
throughput and/or maximum burst size) as decided by the upper-
level controller. A distinctive feature of system is that controller
allocations are advisory, namely an application may decide to
exceed them hoping to leverage excess capacity from reduced
demand of other applications. Such speculative policies on the
side of applications are key to benefiting from spare capacity,
if available. They cannot however steal another application’s
fair share as the scheduler protects compliant applications from
violating their latency targets under overload conditions. Our
system makes applications aware of their latency metrics at any
point in time, so that they can decide if they can afford risking
latency violations. We implement and evaluate a preliminary
prototype system, to demonstrate its effectiveness in fairly regu-
lating per-client throughput while providing latency guarantees
in experiments with synthetically generated workloads. Our
results demonstrate that our system is effective in automatically
regulating application request rates and in achieving latency
targets under workload variations.

I. INTRODUCTION

Shared resource pools, such as consolidated storage arrays,
large core-count multiprocessors, etc., are prevalent in data-
center environments due to their simpler management and
statistical multiplexing benefits. Concurrent access to such
resource pools by multiple applications raises the issue of how
to ensure fair sharing of resources, isolating well-behaving
applications from others that may be hoarding resources, and
differentiating between applications under resource shortage.
Applications often express their performance goals either via
explicit metrics, such as a specific level of throughput and/or
latency, or via utility functions expressing the value assigned
by the application owner to different performance levels.

II. DESIGN AND IMPLEMENTATION

Design. In our system, applications specify their latency
targets (e.g., <150ms) and their appreciation for throughput
(or equivalently, their willingness to pay for it) at their latency
target through their utility function. The system achieves fair
sharing of resources using the utilitarian criterion, which aims
to maximize social welfare, i.e., allocate each application as
high throughput as possible maximizing aggregate utility.

Our system features a Controller that is aware of
applications (maintains session state for them) and
communicates with them via a two-way API. Applications
make their characteristics (throughput utility, latency target,
maximum burst size) known to the Controller, and expect that
the Controller will notify them of an arrival-rate allocation,
once per control period. The Controller periodically adjusts
the arrival-rate allocations based on the observed system status
to effectively manage resource utilization. The assumption
that utilization measurements for the resource pool are
available allows the Controller to aim for controlling an
aggregate metric (U ) rather than several individual metrics
(per-application latency targets). An important distinctive
feature of our system is that applications do not promise to
limit themselves to the Controller-reported allocation but may
individually decide to exceed them if they determine that they
are ahead of their latency goals, as a way to leverage spare
capacity (if they have demand for it). This however does not
come at the expense of other applications. For performance
isolation, our system utilizes a lower-level scheduler that takes
as input per-flow load specifications (request rate, maximum
burst size, latency target) and schedules requests in a way
that will achieve latency targets as soon as the overall load is
feasible.

Implementation. Our implementation follows staged event-
driven architecture (SEDA) principles and consists of a number
of separate modules. Each module/stage is served by a separate
thread, and the entire system is run as a single process. This
minimizes the latency incurred in information sharing and
module communication. More details will be provided on the
poster.

III. FUTURE WORK

Our future work focuses on the scaling of the scheduler
and execution modules, while also abstracting the execution
module so that it can manage different kinds of resources
(e.g. threads, VMs, containers etc). Our long-term goal is to
demonstrate that the benefits of this QoS architecture carry on
to fully distributed applications and shared resource pools. We
thankfully acknowledge support by the Greek Research Tech-
nology Development and Innovation Action “RESEARCH-
CREATE- INNOVATE”, Operational Programme on Compet-
itiveness, Entrepreneurship and Innovation (EΠAνEK) 2014-
2020, Grant T2E∆K-02848 (SmartCityBus).


