Analysis of Noisy Neighbor Effect in Scheduling
Caused by Persistent Memory 1/0

Hyunwoo Ahn
Sungkyunkwan University
Suwon, Republic of Korea

ahw9925@skku.edu

Abstract

Linux’s Completely Fair Scheduler (CFS) schedules tasks
considering their processor loads so that the loads are evenly
balanced on the processors. The CFS manages the processors
into multiple levels of scheduling domains, such as simul-
taneous multi-threading (SMT) domain, symmetric multi-
processing (SMP) domain, and non-uniform memory access
(NUMA) domain. It performs load balancing at each sched-
uling domain level from the bottom to the top.

I/0-bound tasks generally have lower processor loads than
processor-bound tasks. This is because they spend most of
their time waiting for I/O operations to complete. Therefore,
the CFS distinguishes processor-bound tasks from I/O-bound
tasks by using their processor load.

However, when using persistent memory (PM) as storage,
we found out that the CFS cannot successfully classify I/O-
bound tasks when the I/O operations are performed to the
PM storage. This is due to the direct access (DAX) structure
of the PM-aware file systems. Unlike the conventional file
I/O path, the DAX architecture bypasses the OS kernel I/O
paths to reduce access latency and page cache management
overhead [1]. In the DAX architecture, I/O operations are
performed through load and store instructions. Because of
this, the I/O-bound threads seem to continuously consume
processor cycles from the viewpoint of the OS kernel. As a re-
sult, the difference in processor load between I/O-bound and
processor-bound threads becomes small, and thus the CFS
handles the PM I/O-bound tasks the same as the processor-
bound ones.

We analyzed the performance impact from this phenome-
non. In the SMT domain, tasks scheduled on sibling cores
that share a physical core can achieve good performance if
there is no internal resource contention among them. Thus,
it is desirable to mix processor-bound tasks and I/O-bound
tasks during execution in the SMT domain. In conventional
OS, the CFS schedules them evenly mixed, taking into ac-
count the load differences between processor-bound tasks
and I/O-bound tasks. However, we found that the CFS places
processor-bound tasks with other processor-bound tasks and
PM I/O-bound tasks with other PM I/O-bound tasks.

We also analyzed performance degradation in two higher-
level scheduling domains, the SMP domain and the NUMA
domain. Scheduling that disregards PM I/O can lead to tasks
of the same type being concentrated on a single NUMA node.

Jongseok Kim
Sungkyunkwan University
Suwon, Republic of Korea

ks7sj@skku.edu

Euiseong Seo
Sungkyunkwan University
Suwon, Republic of Korea

euiseong@skku.edu

For example, if PM I/O tasks are placed on a single node, it
can cause contention in the memory bus, interconnect, PM
bandwidth, etc. On the other hand, if processor-bound tasks
are placed on a single node, it can cause severe last-level
cache (LLC) contention in the SMP domain.

To understand the impact of the above phenomena on
performance, we conducted experiments using the SPEC
CPU benchmark suite and the flexible IO (FIO) tester. Con-
sidering various levels of cache sensitivity, we selected six
different processor-bound workloads from the SPEC CPU
suite. For PM I/O-bound workloads, we used FIO random
write. Each experiment consisted of a pair of workloads, one
processor-bound workload and FIO random write.

The experiment results showed that co-scheduling dif-
ferent types of workloads in the SMT domain improved
overall performance by an average of 18% compared to co-
scheduling the same types of workloads. Among the processor-
bound workloads, those with low cache sensitivity showed
higher performance improvements than those with high
cache sensitivity. However, in the case of povray, despite
its low cache sensitivity, the performance improvement was
minimal. This is because povray is a very lightweight work-
load, so even when scheduled with the same types of work-
loads, its performance degradation is relatively low com-
pared to other workloads.

For the other two higher-level domains, we conducted
experiments using eight processor-bound workload tasks
and eight random write tasks for each workload pair. To ex-
clude the effect of resource contentions in the SMT domain,
each task was scheduled on a different physical core. Also, to
alleviate performance degradation caused by remote access
in NUMA, we interleaved all PMs across all NUMA nodes.
Our experimental results showed that evenly distributing the
two types of workload tasks across all NUMA nodes resulted
in up to 16.6 times better performance than concentrating
the same type of tasks on each node. Furthermore, we found
that processor-bound workloads with higher bandwidth con-
sumption show greater performance improvement.

References

[1] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems. 1-15.



