
GraphScope Flex: A Graph Computing Stack with LEGO-Like Modularity

GraphScope Team

graphscope@alibaba-inc.com

Extended Abstract
Real-world graph applications can exhibit significant varia-

tion inmany aspects. Diverse graphworkloads, such as graph

analytics, graph traversal queries, graph pattern matching,

and graph neural networks, may be involved, each of which

can be tackled using different programming interfaces, such

as Pregel[5], PIE[1], and FLASH[7] for graph analytics, or

Cypher and Gremlin for graph queries. Furthermore, these

applications may have different deployment modes, includ-

ing an offline analytical pipeline that prioritizes low running

time of a complex query, an online service that demands

high query throughput, or a learning task that can leverage

heterogeneous hardware resources, such as CPUs and GPUs.

Moreover, the graph data can be stored in various formats,

considering factors such as persistency, mutability, parti-

tioning, and transactional guarantees. To further complicate

the situation, these aspects can interact with each other in

complex ways. For example, a fraud-detection scenario at

Alibaba [2] may require a combination of graph analytics,

traversal queries, and neural networks, working on an im-

mutable distributed in-memory graph in an offline pipeline.

On the other hand, an online interactive graph query sys-

tem may require support for traversal queries and pattern

matching on a mutable, persistent graph.

To address such diversities and complexities, we have de-

veloped GraphScope Flex, a graph computing stack with

LEGO-like modularity, as shown in Figure 1. This stack com-

prises multiple components, which users can combine like

LEGO bricks to create customized deployments that meet

their specific graph computing needs. For example, in Fig-

ure 1, users can deploy systems for online graph business

intelligence, offline analytical graph computation, and train-

ing GNN models, using orange, yellow, and green bricks, re-

spectively. Furthermore, the blue frame in Figure 1 encloses

the deployment of GraphScope Flex for solving a complex

graph pipeline, such as the aforementioned fraud detection.

GraphScope Flex deployments are flexible yet highly per-

formant. For instance, it has outperformed the other systems

from 2× to magnitudes in both LDBC [3] SNB and Grapha-

lytics benchmarks
1
. We highlight the techniques that enable

this flexibility and efficiency below.

• The unified storage interface provides a layer of highly

efficient graph access interface, which decouples different

graph formats and media from computing engines. It han-

dles the read-paths uniformly to a variety of graph data

stores, with support for a number of indices and other

“push-downs” to leverage the optimizations provided by

1https://github.com/alibaba/GraphScope/blob/Flex/Performance.md

Cypher Gremlin Interfaces GNN Models

GRAPE [1]

Hiactor [4] Gaia [6]

Hiactor Codegen Gaia Codegen

Builtin Apps

Tensorflow

Graph Query Optimizer

Graph-Learn [8]
Graph IR

Python/Java/… SDKRESTful/WebSocket/… API

PyTorch

Unified Storage Interface

Pregel [5]
/ PIE [2] FLASH [7]

For online graph BI For offline graph analytics For one-stop graph computingFor GNN

Archived GraphIn-memory Property GraphMutable Property Graph …

Figure 1. A LEGO view of GraphScope.

the graph stores. Additionally, new types of graph stores

can be easily integrated into GraphScope Flex.

• A Graph IR (intermediate representation) layer provides a

language-agnostic representation that can be translated

from graph queries written in Cypher and Gremlin. It ex-

tends relational algebra to include a set of graph-specific

primitives such as getting neighbors and paths. Under the

IR layer, a universal optimizer is developed. After opti-

mization, the IR can guide code generation for either the

Hiactor [4] for online high-QPS service, or Gaia [6] for

data-parallel execution.

• An analytical runtime based on GRAPE [1], which uses a

fragment-centric and extensible architecture to support

multiple programming models efficiently.

• A GNN framework based on graph-learn [8] that can ef-

ficiently support distributed GNN training on industrial-

scale graphs. It supports both Tensorflow and PyTorch as

the training backend, and decouples sampling and training

such that each part can be scaled independently.

References
[1] Fan,W., et al. Parallelizing sequential graph computations. In SIGMOD

2017.
[2] Fan, W., et al. Graphscope: A unified engine for big graph processing.

Proc. VLDB Endow. 14, 12 (2021).
[3] Linked data benchmark council. http://ldbcouncil.org/.
[4] Li, S., et al. Hiactor: an open-source hierarchical actor framework.

https://github.com/alibaba/hiactor, 2023.
[5] Malewicz, G., et al. Pregel: a system for large-scale graph processing.

In SIGMOD 2010.
[6] Qian, Z., et al. Gaia: A system for interactive analysis on distributed

graphs using a high-level language. In NSDI 2021.
[7] Xue, L., et al. Flash: A framework for programming distributed graph

processing algorithms. In ICDE 2023, to appear.
[8] Zhu, R., et al. Aligraph: A comprehensive graph neural network

platform. Proc. VLDB Endow. 12, 12 (2019).

https://github.com/alibaba/GraphScope/blob/Flex/Performance.md
http://ldbcouncil.org/
https://github.com/alibaba/hiactor

