
Application Layer Processing Offload in the Kernel
Giulio Sidoretti

University of Rome Tor Vergata
CNIT

Sebastiano Miano
Queen Mary University of London

Stefano Salsano
University of Rome Tor Vergata

CNIT

Gianni Antichi
Politecnico di Milano

Aurojit Panda
New York University

1 Introduction
Current service mesh deployments adopt a sidecar model,
and associate a userspace proxy, such as Envoy, with each
component (process or container). All network traffic to-or-
from the container traverses the proxy, see Figure 1a.
The current implementations add significant overheads,

that are mainly due to the additional kernel-to-userspace
transitions [4]. Recent efforts, such as the Cillium Service
Mesh [2] have proposed moving part of the processing of the
proxies into the kernel. Layer 3 (L3) and Layer 4 (L4) policies
are implemented in eBPF, but there is the need to fall back to
the userspace sidecar for Layer 7 (L7) processing.We, instead,
advocate for a full proxy offload (Figure 1b). L7 policies are of
high importance in a sidecar proxy, considering for example
the high amount of gRPC traffic in production datacenters
[3]. Unfortunately, moving layer 7 functionality to the kernel
is challenging. For example, gRPC vectors are unbounded
and hence hard to deserialize.

2 Challenges
eBPF is a technology to load and run programs in a sand-
boxed environment in the kernel space, without having to
modify the kernel itself. eBPF programs have limited com-
plexity. Some use cases lead to increasingly complex pro-
grams that may not be implementable. We might extend the
capabilities of eBPF, i.e. by incorporating a kernel module
for gRPC serialized data processing which provides an in-
terface to eBPF. It is a design choice that depends on the
use case. There is a tradeoff between using a highly complex
eBPF program versus modifying the kernel itself.
A client-server architecture, such as that used by gRPC,

typically involves only two parties. When a userspace proxy,
such as Envoy, is used, the proxy simply terminates the client
connection and opens a new one to the server. With eBPF,
this architecture has to be further questioned. Specifically,
the eBPF proxy is attached to a socket hook, which means
that a listening socket must be present on the machine, wait-
ing for client requests.

3 Benchmark for the eBPF Proxy
We have deployed a testbed to measure the performances
of an eBPF proxy in the context of gRPC monitoring. The

User space
Pod

L7

TCP/IP

User 
container

veth-pair

L4
Sidecar 
Proxy

Egress
Ingress Kernel

L4

(a) Standard

User space
Pod

User 
container

TCP/IP

veth-pair
Egress

Ingress

L7L4

Kernel

(b) Our Approach

Figure 1: Networking processing involved for ingress
(blue line) and egress (red line) packets in a service
mesh. In the standard case (a), the sidecar proxy is in
charge of the L4 and L7 processing. Our approach (b) is
to completely remove the sidecar proxy and offloading
L4 and L7 functionality in the kernel using eBPF.

eBPF program is attached to the SK_SKB hook, where we can
access directly the content of the HTTP2/gRPC packet. Some
information, such as the path of the called RPC, is written
in the HTTP2 headers and is easier to parse. To access the
data carried in the gRPC request itself, the program needs to
deserialize the message. In our current implementation, this
is done directly in eBPF, with a function that can process
only a specific RPC, but in the future we need to generalize
the process, eventually introducing a kernel module. We
conducted our benchmark using ghz [1]. The performance
of the eBPF proxy was compared with a NGINX gRPC proxy.
When using eBPF, the latency for every gRPC request went
from 1.58𝑚𝑠 (NGINX) to 1.03𝑚𝑠 , with a reduction of 34.8%.

References
[1] Bojan D. 2023. ghz. ghz.sh. [Online; accessed 09-03-23].
[2] Thomas Graf. 2022. Cilium Service Mesh. https://isovalent.com/blog/

post/cilium-service-mesh/. [Online; accessed 09-March-2023].
[3] Svilen Kanev et al. 2015. Profiling a warehouse-scale computer. In

Proceedings of the 42nd Annual International Symposium on Computer
Architecture. 158–169.

[4] Xiangfeng Zhu et al. 2022. Dissecting Service Mesh Overheads. arXiv
preprint arXiv:2207.00592 (2022).

ghz.sh
https://isovalent.com/blog/post/cilium-service-mesh/
https://isovalent.com/blog/post/cilium-service-mesh/

	1 Introduction
	2 Challenges
	3 Benchmark for the eBPF Proxy
	References

