
Transparent OS support for variable translation sizes
Stratos Psomadakis

National Technical University of Athens
Georgios Goumas

National Technical University of Athens

Research Problem
The address translation (AT) overhead has been widely stud-
ied in literature and the new 5-level paging is expected to
make translation even costlier. Multiple solutions have been
proposed to alleviate the issue either by reducing the number
of TLB misses or by reducing their overhead. The solution
widely adopted by industry involves extending the page
sizes supported by the hardware and software, with the most
common being 2MB and 1GB.

As the e�ectiveness of 2MB pages starts to diminish with
the ever increasing memory footprint of applications [1], a
natural solution would be to replace 2MB with 1GB pages.
However, 1GB pages are more cumbersome to use. The align-
ment restrictions of larger pages (i.e., memory should be 1GB-
aligned both physically and virtually) limits their usefulness,
especially in high fragmentation scenarios [5]. In addition,
the Linux memory subsystem imposes more drawbacks to
their use. Since it faults-in the whole page, be it 4KB, 2MB
or 1GB, the page fault tail latency and the memory bloat
increase when the page size increases[3]. These are a few
reasons why the OS support for 1GB pages remains limited
(hugetlbfs), while for 2MB pages it is ubiquitous and in most
cases transparent (THP). It seems that an intermediate page
size could be more easily exploited.
At the same time, in high fragmentation scenarios, even

2MB pages might become di�cult to allocate [4]. In these
cases, an intermediate page size between 4KB and 2MB could
also be bene�cial. r In contrast to x86, ARMv8-A and RISC-V
provide architectural support for such an extended range
of page sizes, in the form of either a con�gurable base page
size or TLB support for OS-assisted coalescing, i.e., treating
a group of OS-designated contiguous pages as a single trans-
lation entity. As these ISAs are gradually making their way
to the datacenter, where the large memory footprints of the
workloads stress the address translation hardware, we argue
that these intermediate translation sizes can be exploited to
address limitations exhibited by the prevalent 2MB / 1GB
page model. We also consider their transparent OS support,
that is currently missing, a key enabler to this direction.
Our contributions
Based on the above, we �rst evaluate the usefulness of these
intermediate translation sizes, usingmemory-intensivework-
loads running on an ARMv8-A server. ARMv8-A paging
structures include a (contig) bit which, if set in # consecu-
tive page table entries, indicates that the mapped pages are
contiguous and suitably aligned both physically and virtu-
ally. This allows the TLB to coalesce these entries to one,

increasing the TLB reach and e�ectively forming intermedi-
ate translation sizes. The currently supported sizes are 64KB
for 16 contiguous 4KB pages and 32MB for 16 contiguous
2MB pages [2].

Linux supports these intermediate sizes via the hugetlbfs
interface, which requires memory pre-allocation. Despite
this limitation, we show that running a series of benchmarks
backed by 32MB Hugetlbfs pages reduces the AT overhead
compared to 2MB pages, and provides similar performance
gains to 1GB pages for big memory workloads, such as SVM
and hashjoin. (Fig. 1). For smaller and irregular workloads,
such as omnetpp and astar, 64KB pages eliminate the AT
overhead, which can be especially useful in cases of high
fragmentation.

Figure 1. Execution time normalized to 4KB
1.

00

1.
00

1.
00

1.
00

1.
001.
09

1.
11

1.
08

1.
02

1.
021.
10

1.
11

1.
60

1.
43 1.

61

1.
10

1.
13

1.
60

1.
59 1.

81

1.
09

1.
14

1.
58

1.
6 1.

81

0.00

0.50

1.00

1.50

2.00

astar omnetpp graph500 SVM hashjoin

Speedup (x)

4KB 64KB 2MB 32MB 1GB

Based on these �ndings our research goal is to design a
transparent OS mechanism that creates these intermediate
translation sizes on demand, omitting the need for memory
pre-allocation. To this end, we extend contiguity-aware pag-
ing [1] to allocate properly aligned contiguous pages across
faults, thus lazily generate groups of contiguous pages.When
such a group is created, i.e., when all the pages in the group
are faulted-in, our mechanism promotes it transparently to
the corresponding intermediate translation size. If for any
reason the group is broken, our mechanism is responsible
for demoting the mapping and keeping the TLBs coherent.
Our preliminary results indicate performance comparable to
hugetlbfs, while maintaining the �exibility and transparency
of vanilla 4KB / 2MB paging.
Acknowledgements
This work is funded by the EU under the Horizon Europe
grant 101092850 (project AERO).
References
[1] Chloe Alverti et al. “Enhancing and Exploiting Contiguity for Fast

Memory Virtualization”. In: ISCA 2020.
[2] ARMLTD.ArmArchitecture ReferenceManual for A-pro�le architecture

(D.8.6.1 The Contiguous bit).
[3] Youngjin Kwon et al. “Coordinated and E�cient Huge Page Manage-

ment with Ingens”. In: OSDI 2016.
[4] Chang Hyun Park et al. “Every Walk’s a Hit: Making Page Walks

Single-Access Cache Hits”. In: ASPLOS 2022.
[5] Zi Yan et al. “Translation Ranger: Operating System Support for

Contiguity-Aware TLBs”. In: ISCA 2019.


