
The Next 700 Heterogeneous OLAP Systems: A Framework to
Answer What-if DesignQuestions

Faeze Faghih
Systems Group, TU Darmstadt
faeze.faghih@tu-darmstadt.de

Zsolt István
Systems Group, TU Darmstadt
zsolt.istvan@tu-darmstadt.de

Florin Dinu
Huawei Munich Research Center

florin.dinu@huawei.com

1 BACKGROUND AND MOTIVATION
Near-Data-Processing (NDP) is often proposed as a solution to solve
the data movement bottleneck in database systems. NDP offloads
part of the computation close to where the data is stored and reduces
the amount of data that needs to be moved.

If we look at the NDP proposals in the literature, various types
of hardware are used, and it is not trivial to generalize their results.
One reason is that the amount of data reduction determines the
usefulness of a solution: using a particular architecture may result
in performance improvement if the data reduction exceeds a certain
threshold, otherwise, it could lead to a slowdown. However, data
reduction is not the only concern. Today’s servers offer numerous
heterogeneous resources and the processing elements (PEs) chosen
for running offloaded computation (e.g. microprocessors, FPGAs
embedded in SSDs, SmartNICs) typically have lower computation
power in comparison to a server-class CPU. Across the different
heterogeneous resources, the system may experience a slowdown
instead of a speedup due to computational overhead.

In related works, the choice of hardware and work partitioning is
typically done by hand by domain experts. In this work, we propose
a framework to automate such design decisions in an NDP system.
Our framework examines a combination of metrics (i.e. amount of
data reduction in the workload, processing rate of resources, and
link bandwidths) to answer what-if questions in designing NDP
OLAP systems with heterogeneous hardware offloading such as:
under what conditions of relative throughput and data reduction,
would adding a new PE make sense?

2 FRAMEWORK OVERVIEW AND NEXT STEPS
To build a framework that automates determining and compar-
ing viable offload design choices, we need a way to abstract away
low-level details of systems and model them in a common repre-
sentation. In related works, different PE types are used to run the
offloaded computation (e.g. microprocessor [1] and FPGA [2] in
SSDs), this brings our first challenge: to find a way to model various
types of PEs in a similar fashion. In addition, the internal structure
of devices could also play a role in the usefulness of NDP. For ex-
ample, NVIDIA Bluefield-2 SmartNIC provide different bandwidths
depending on how it is used (doing processing in its processor or
bypassing it), or the SSD in Biscuit [1] has more than one type of PE
(i.e. a microprocessor and additional hardware pattern-matchers)
inside it. The second challenge is capturing the internal structure in
the model without “overfitting”. Our systems of interest are Online
Analytical Processing (OLAP) systems. As a result, our primary
focus is on throughput and data reduction at each PE. Based on
these, we want to determine the bottleneck PE, or link, in the overall
architecture.

Defining amodel.One of thewell-studiedmodeling approaches
that we can adapt to reach our goal, is Network-of-Queues (NoQ).
In an NoQ model, a system consists of multiple devices, each of
which has its own queue and can be single-threaded or parallel. We
represent all links and PEs of the real system as devices in the NoQ
model. An NoQ model considers jobs, which in our case map to
batches of records (e.g., the size of a disk page). The inputs to the
NoQ model are: (i) the external arrival rate, which is equivalent
to the overall throughput of an NDP system, (ii) the number of
times each job gets service from each device (visit ratio), which
can be derived from the relative selectivity of each processing step
as data is retrieved from storage, and (iii) the service time of each
device, which we can set by using the inverse of the maximum
processing/transfer rate of each PE/link.

In an NoQ model, the topology of how devices are connected
is abstracted away but in our case, we need to derive visit ratios
based on selectivity and how devices are connected. An example
scenario: we have a device running a process that filters out 20%
of the data (i.e. 80% of the input data leaves that device); if all the
input jobs visit this device (i.e. visit ratio of the device equals 1),
only 80% of the input data visit the next device. As a result, the visit
ratio of the downstream devices will be 0.8.

How we use the model. We use the NoQ model “in reverse”
to find the saturation point of a system (i.e. the point at which the
utilization of one of the devices approaches saturation and becomes
the bottleneck) and achieve the maximum throughput that the
system is capable of handling. By changing the model parameters
slightly, e.g., adjusting bandwidths or selectivities, it is possible to
understand how the system would behave under slightly different
conditions and whether it would be useful, for instance, to consider
a faster in-storage processor.

An NoQ model can also output response times and queue length
statistics at different load levels – in our case, however, these are
not of interest because our goal is to find the bottleneck device in
a heterogeneous system, and to reason about how the bottleneck
would change under slight changes to the system properties.

Next Steps. In our next step, we will use the described frame-
work to create a design space exploration (DSE) tool. With more
candidate devices to run offloaded computations and more work-
loads using the OLAP system, the practical design options increase.
With a set of devices and workloads (e.g. set of SQL queries), deter-
mining whether and how to use these devices is not trivial, and our
DSE tool will help solve this problem by automating the process.

REFERENCES
[1] Boncheol Gu et al. 2016. Biscuit: A framework for near-data processing of big data

workloads. ACM SIGARCH Computer Architecture News 44, 3 (2016), 153–165.
[2] Joo Hwan Lee et al. 2020. SmartSSD: FPGA Accelerated Near-Storage Data

Analytics on SSD. IEEE Computer Architecture Letters 19, 2, 110–113.


	1 Background and Motivation
	2 Framework Overview and Next Steps
	References

