INSANE: A Uniform API for
QoS-aware Host Networking as a Service

Lorenzo Rosa, Andrea Garbugli, Antonio Corradi, Paolo Bellavista
Department of Computer Science and Engineering
University of Bologna
Bologna, Italy
{name lastname}@unibo.it

The ability to process and analyze data under stringent time con-
straints is quickly becoming a key requirement of modern data-
driven applications, leading to a growing demand for systems that
can achieve ps-scale latencies while maintaining high levels of
reliability, scalability, and efficiency [3, 4]. To avoid becoming a bot-
tleneck, widely popular systems, ranging from key-value stores to
state-machine replication engines, have been carefully re-designed
to leverage kernel-bypassing I/O techniques and modern hardware
that implements common operating system services, such as host
networking, in more efficient way. An even more radical approach
to reduce service latencies is emerging under the paradigm of edge
cloud computing, which combines such acceleration techniques
with the idea of moving components on small-scale datacenter-like
environments physically close to datasources, in support of latency-
critical services (e.g., Multi-access Edge Computing platforms, or
MEC, for 5G operators).

Although kernel-bypassing techniques coupled with modern
hardware have proved effective to achieve time-sensitive data pro-
cessing, two critical concerns still prevent their wide-scale adoption.
On the one hand, existing techniques for datapath acceleration
require the use of custom and usually low-level interfaces that
make application development difficult and time-consuming, re-
quiring advanced system expertise: not only applications must be
re-architected and carefully optimized to fully leverage the per-
formance benefits of acceleration technologies [1], but developers
must also deal with the continuous release of updated device fea-
tures and the concurrent deployment of different generations of
hardware [2]. On the other hand, there are several possible tech-
niques for host networking accelerations, which offload typical
kernel tasks to userspace or even hardware: the Linux eXpress Data
Path (XDP), the Data Plane Development Kit (DPDK), or Remote Di-
rect Memory Access (RDMA). Each of these options defines its own
programming abstractions, network access interface, and memory
management: hence, application portability is very hard to provide,
and accelerated services can be deployed only onto a single and
highly homogeneous environment, whereas real-world platforms
are usually quite the opposite, in particular in the so-called cloud
continuum [3]. For instance, RDMA is only intermittently supported
by major public clouds. Even more importantly, the increasingly
popular cloud edge computing platforms are highly heterogeneous
in terms of software and hardware resource availability, making
such lack of portability even more troubling right where latency-
aware applications are most needed.

We present INSANE (Integrated aNd Selective Acceleration for
the Network Edge), a general-purpose and lightweight userspace

network stack that provides a uniform API to a wide range of net-
work acceleration technologies, including XDP, DPDK, and RDMA,
even available to the same supported application, with the goal of
easing the development, deployment, and portability of latency-
critical services in the cloud continuum. Following a microkernel-
inspired architecture [2], INSANE consists of two main components:

(1) A client library, exposing a uniform API with a minimal set of
communication primitives, yet expressive enough to let devel-
opers define high-level and domain-specific abstractions on top
of them. Through a set of Quality of Service (QoS) parameters,
applications can define differentiated network requirements for
their data flows, such as latency-sensitiveness, reliability, and
resource consumption. Unlike in Demikernel [4], in our solution,
flows with different requirements can be mapped to different
technologies.

(2) A runtime, working as a network stack as a service for applica-
tions and offering common services for high-performance net-
working, including memory management for zero-copy trans-
fers, efficient packet processing, and different packet scheduling
strategies. A plugin-based architecture allows the specialization
of such abstractions for each integrated network acceleration
technology. In particular, the high-level QoS requirements speci-
fied by applications are used to dynamically map the flows to the
most appropriate acceleration technology that is dynamically
available at the deployment site.

Overall, INSANE significantly simplifies the development of latency-
critical services based on acceleration techniques by offering QoS-
aware host networking as a service, introducing minimal (ns-scale)
overhead, and making applications portable across heterogeneous
environments such as public clouds and edge cloud nodes, thus
unleashing a new generation of ultra-low latency cloud continuum
applications in several time-critical domains.

REFERENCES

[1] AnujKalia, Michael Kaminsky, and David G Andersen. 2016. Design guidelines for
high performance RDMA systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16). 437-450.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans, Steve Grib-
ble, et al. 2019. Snap: A microkernel approach to host networking. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 399-413.

[3] Jose Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. 2021. Towards
low-latency service delivery in a continuum of virtual resources: State-of-the-art
and research directions. IEEE Commun. Surveys & Tutorials 23, 4 (2021), 2557-2589.

Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar
S Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,
et al. 2021. The demikernel datapath os architecture for microsecond-scale data-
center systems. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles. 195-211.

[2

[4



