Deriving and proving security guarantees of Arm CCA

Ben Fiedler
ETH Zurich
Zurich, Switzerland

The Arm Confidential Compute Architecture (CCA) allows
running applications in the cloud, while providing strong
guarantees about data integrity and confidentiality to lower-
privileged software.

CCA-compliant systems create and manage four worlds,
which form a partition of the system address space: realm,
root, secure, and non-secure. Worlds are a dynamic partition
of the system address space: trusted software running in
the root world is responsible for safely transferring memory
between worlds upon request.

Confidential computing takes place entirely in the realm
world, in so-called realms. Realms are isolated from each
other by the realm management monitor (RMM), which is
privileged software running in the realm world. The RMM
provides a strict subset of hypervisor functionality to realms,
such as pausing/resuming execution and nested translation,
leaving resource allocation and scheduling decisions up to
non-secure world.

CCA'’s security guarantees have not been formalized, or
even exhaustively described informally. Allowing creation,
modification, and destruction of realms at runtime makes
precisely expressing the necessary security properties diffi-
cult: the security state of such a system changes over time,
and has to be correctly maintained even during security state
transitions. A formal treatment of CCA’s security properties
is essential to make precise and justified statements about
the actual guarantees provided to realms.

However, modern hardware systems are enormously com-
plicated, and thus difficult to reason about. Many compo-
nents concurrently interact and interleave, with only few
coordination primitives. Thus, these platforms can deliver
great performance, at the cost of obscuring the exact state
of the underlying system, as in-flight operations may have
significant impact on other in-flight operations.

Furthermore, the translation and protection structures in
modern systems are self-referential: they alter semantics
of memory accesses, but are themselves stored within the
same address spaces that they configure and protect. Not
only does this apply to the configurations themselves, but
the hardware mechanisms that interact with these compo-
nents also interact with the same system as the software
running on top. MMUs issue memory operations which are
interleaved with other, regular operations of the system. Ag-
gressive translation and protection caching within the MMU
TLBs can also leak stale protection state, and thus have to

Eurosys’23, May 8-12 May 2023, Rome, Italy
2023.

David Cock
ETH Zurich
Zurich, Switzerland

Timothy Roscoe
ETH Zurich
Zurich, Switzerland

be carefully managed to ensure no unwanted behaviour is
exhibited.

Previous work by Li et al. has verified the implementation
of CCA firmware as a mixture of C and assembly code run-
ning on relaxed-memory hardware, assuming architectural
correctness of the underlying platform. Our work comple-
ments the existing approach by focusing not on CCA’s ar-
chitectural description, but on the interactions within the
underlying memory subsystem, and how it affects the deriv-
able security properties.

We built a machine model that captures the highly con-
current, distributed nature of modern memory subsystems.
Component interactions are modelled via message passing,
and messages represent memory operations, such as reads,
writes, cache/TLB maintenance, and barriers. Message han-
dlers are expressed in a small-step semantics to allow ex-
pressing concurrent interleaving during operation handling.

To tackle the self-referential nature of memory protection
and translation structures, we leverage an intermediate rep-
resentation based on decoding nets. Thus we decouple the
semantics of memory protection and translation structures
from their hardware representation, separating the low-level
semantics of memory operations from their effects on the
translation and protection state.

Overall, we model a platform from the perspective of the
memory subsystem, considering the interactions and inter-
leaving of hardware page table walkers and coherent caches
with software running on top. This way we can even account
for the effects that potential architectural or implementation
bugs have on the platform, which have been shown to occur
in the past.

We present early stage work, done in collaboration with
and funded by Arm. Currently, we are deriving the secu-
rity properties provided by Arm CCA’s hardware memory
protection extensions and proving they are preserved when
moving memory between worlds. After establishing secu-
rity guarantees on the realm address space, we can turn
towards verifying the behaviour of the RMM and its inter-
actions with the non-secure world in safely creating, exe-
cuting, and tearing down realms. Once we have covered the
behaviour of CCA-compliant cores, we can move on to tackle
the behaviour of DMA devices, and how they could be safely
assigned to individual realms. Ultimately, we hope extend
our formal modelling to derive and prove guarantees for a
whole platform, potentially integrating with other (formal)
hardware modelling efforts.


https://orcid.org/0000-0002-7215-9147

