
Less Boot is better than cold: Scaling out by scaling up

Orestis Lagkas Nikolos
olagkas@cslab.ece.ntua.gr

National Technical Univ. of Athens

Georgios Goumas
goumas@cslab.ece.ntua.gr

National Technical Univ. of Athens

Nectarios Koziris
nkoziris@cslab.ece.ntua.gr

National Technical Univ. of Athens

Abstract

The Serverless paradigm has shifted the interest of the sys-

tems community to new techniques that optimize the end-to-

end latency per request. Lightweight VMMs or techniques

such as snapshots have been introduced in order to reduce

the boot time when scaling out new functions. In this poster

we take a step back to rethink how the present fundamen-

tal approaches a�ect performance and resource utilization

based on the workload nature. We focus on �ne managing

existing virtual resources rather than optimizing their fast

destruction and recreation.

1 Function Execution Models

Each function instance is executed inside a container running

on a VM. Cloud providers follow di�erent isolation models

[3] de�ning a concurrency factor (CF) which describes the

number of function instances per VM.

Single instance model (CF=1) per microVM: Guest re-

sources are exclusive to one function instance with no other

competition. The performance is predictable - di�ers only

between cold and warm invocations. Scheduling new mi-

croVMs to servers is like a bin-packing problem where n

�avors (CPU/RAM) need to optimally �t in k servers. The

overall footprint grows as each instance requires a separate

kernel, runtime and initialization code.

Multiple instances model (CF>1) per VM: Resources

are shared among concurrent instances and the competition

is regulated through OS mechanisms (cgroups). The overall

performance is less predicable and depends on the CF and

the function workload type. The VMs are bigger than mi-

croVMs in order to �t multiple instances, hence increasing

the amount of claimed but potentially idle resources. Sched-

uling bigger VMs is more complicated and leads to free but

unusable resources (server fragmentation). However the sum

of all instances footprint is reduced by the order of the CF.

2 Challenges & Design

Boot overhead: The CF a�ects the number of new VM cold

boots that will happen during a burst. The single instance

model (CF=1) will lead to more cold boots. As the CF in-

creases the cold boot number decreases, as more function

instances spawn inside existing bigger VMs. In a function’s

execution cycle two workload phases can exist consecu-

tively. In a compute bound phase resources are consumed

while in an IO bound phase resources are free during the

"blocking" window. In serverless, IO requests are usually

served by network connections reinitialized on each cold

invocation with latencies of 100s ms. In the IO phase the

arriving requests are handled by new instances. In the CF=1

case higher IO latencies will lead to more microVM cold

boots - taxed with the connection overhead. When CF>1 this

IO impact is smaller as new instances spawn faster. Sharing:

In the single instance model the identical stacks -VMM, OS,

runtime, function image- are deployed on multiple physi-

cal servers maximizing network tra�c for distribution and

minimizing potential local sharing. When CF>1 the stack is

shared -and the guest page cache- among CF instances.

Based on these challenges, we adopt the multiple instance

model by scaling out functions in existing VMs while attack-

ing the server fragmentation by vertically scaling the Guest

CPU resources directly from the host using cgroups:

From the guest view each instance is pinned to an exclu-

sive set of vCPUs. From a host view the VM process belongs

to its own threaded domain[1] cgroup. Each instance’s vCPU

threads form a child threaded cgroup, under the parent do-

main. The VM domain CPU shares is the sum of all of its

children shares. The above hierarchy abstracts the CPU al-

location from the virtualization boundary as the host can

directly control the CPU time of a guest (function) process.

The vCPU thread cgroup guarantees Ω(+"(ℎ0A4B/# ) of

predictable CPU time per pinned instance. Thus, the CPU

shares of instances blocked in IO can be used by non blocked

instances with$ (+"(ℎ0A4B) in best case (N-1 instances are

in IO phase), maximizing the resource usage.

When an instance is terminated its vCPUs are unplugged

and the corresponding cgroup on the host is empty. A new

instance is spawned by hotpluging its vCPUs, creating its

vCPU thread cgroup, growing the parent VM cgroup accord-

ingly and pinning the function to the corresponding CPUs

in the guest. The VM grows by the bare minimum (com-

pared to CF>1) and a cold boot is avoided (CF=1). Our early-

stage work combines the bene�ts of the state-of-practice

approaches and sets our future research direction in explor-

ing e�cient memory hotpluging[2] as well as client (IO)

connection sharing between instances in the same VM.

References
[1] Threads. . h�ps://www.kernel.org/doc/Documentation/cgroup-v2.txt

[2] Alexander Fuerst et al. 2022. Memory-Harvesting VMs in Cloud Plat-

forms. In 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems(ASPLOS ’22). Lausanne,

Switzerland, 12 pages. h�ps://doi.org/10.1145/3503222.3507725

[3] Zijun Li et al. 2022. RunD: A Lightweight Secure Container Runtime for

High-density Deployment and High-concurrency Startup in Serverless

Computing. In 2022 USENIX Annual Technical Conference (USENIX ATC

22). Carlsbad, CA.

1

https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://doi.org/10.1145/3503222.3507725

	Abstract
	1 Function Execution Models
	2 Challenges & Design
	References

