
Impact of Priority Inversion on Frame Jank
Lei Li1*, Yu Liang1, Rachata Ausavarungnirun2, Tei-Wei Kuo3,4, Chun Jason Xue1
1City University of Hong Kong 2King Mongkut’s University of Technology North Bangkok

3National Taiwan University 4Mohamed bin Zayed University of Artificial Intelligence

1 Introduction
Priority inversion problem refers to a situationwhen a thread
with higher priority is blocked by a lower-priority thread
for an unbounded period of time. This problem occurs in
applications that require synchronization primitives such
as mutex, semaphores, and seqlocks. This is a critical and
intolerable problem in the real-time system since the sys-
tem has to ensure the bounded running time according to
priority [1, 3]. However, the impact of priority inversion in
common OS like Android is inconclusive. Some researchers
think priority inversion can be ignored in common OS [1],
but this claim is not well-evaluated.

In this study, we explore the occurrence of priority inver-
sions in Android smartphones and argue its negative impact
on user experience in CPU-intensive workloads. Specifically,
we quantify user experience with frame jank, which hap-
pens when a frame fails to be generated and displayed on
the screen within 16.7 ms. When frame jank happens, the
user perceives slow UI rendering and flickers on the screen.
We observe up to 216 ms frame jank on smartphones caused
by priority inversion, which indicates that priority inversion
can be harmful to the user experience and should be limited.

2 Experiments and Observations
We measure priority inversions on two commercial Android
smartphones (i.e., Google Pixel 3 and Google Pixel 5) and
focus on priority inversions caused by kernel mutex.
Observation 1: priority inversion in smartphones is not
problematic in usual cases. In common cases (i.e., we use
9 APPs before each test), priority inversion rarely happens.
Our experimental results show 10s of (at most a few hundred
of) priority inversions can lead to blocks over 1 ms, in a
five-minute test. Moreover, the maximum block time of most
foreground APPs (i.e., Youtube, Facebook, Angrybird AR,
Arena of Valor, PUBG, and Google Maps) is lower than 11
ms, and only the maximum block time of Youcame Makeup
AR is 20 ms. Since user experience is critical for smartphone
users, we selectively measured a priority inversion type,
which is caused by blocked RenderThread. Theoretically, this
priority inversion type can affect the rendering of frames and
are likely to cause frame janks. However, our experimental
results show that this priority inversion type occurs rarely
(i.e., less than one percent of RenderThread will cause the
block on the higher priority thread, and the maximum block
time is only 10 ms).

* student and presenter

Observation 2: priority inversion in smartphones can
cause long frame jank with insufficient CPU resources.
As mentioned above, the impact of priority inversions in-
curred by RenderThread is acceptable in usual cases. How-
ever, when we reduce the smartphone’s CPU resources (Pixel
3 has 8 CPU cores by default), we observed the block time of
RenderThread-incurred priority inversions increased signifi-
cantly as shown in Table 1. The longest block time can be up
to 216 ms, or over 13 frames are blocked, making the user
perceive a long frame jank. Besides, there are 10s of priority
inversion incidents that result in more than 16ms block time,
which will also incur user-perceivable frame janks.
Table 1. Priority inversion with insufficient CPU resources.
The second, third, and fourth columns show the number of
priority inversions that lead to blocking time between 1ms-
10ms, 10ms-16ms, and larger than 16ms, respectively. (testing
when using YoucameMakeup ARwithout background APPs)
CPU cores 1-10ms 10-16ms >16ms Max block time(ms)
8 cores 194 0 0 6

4 small cores 749 39 28 78
2 small cores 493 43 77 216

More-complicated APPs (e.g., AR APPs and APPs support-
ing neural networks), split-screen mode, and multi-display
Android systems (e.g., Microsoft Surface Duo and LG ThinQ
Dual Screen) will strain CPU resources even more. All of
these trends are believed to render priority inversion a more
serious problem in the near future. Our preliminary results
show screen-split on smartphones can triple the max block
time caused by priority inversion.
3 Ongoing and Future Work
Currently, we tried to solve the RenderThread-incurred pri-
ority inversions using existing priority inheritance support
in Linux kernel (rt_mutex [2]). Although rt_mutex can limit
the max block time to around 1 ms when conducting the
same experiments as Table 1, we also observed that rt_mutex
has much larger overhead than mutex in our experiments.
Systematically solving priority inversions may need a proper
trade-off between mutex and rt_mutex.
References
[1] Andreu Carminati, Rômulo Oliveira, Fernando Luís, and Friedrich. 2012.

Implementation and Evaluation of the Synchronization Protocol Imme-
diate Priority Ceiling in PREEMPT-RT Linux. Journal of Software 7 (03
2012).

[2] Steven Rostedt. 2006. RT-mutex implementation design. https://docs.
kernel.org/locking/rt-mutex-design.html. [accessed 5-March-2023].

[3] D. Silambarasan and M RamanathaVenkatesan. 2016. Handling of
Priority Inversion Problem in RT-Linux using Priority Ceiling Protocol.

https://docs.kernel.org/locking/rt-mutex-design.html
https://docs.kernel.org/locking/rt-mutex-design.html

	1 Introduction
	2 Experiments and Observations
	3 Ongoing and Future Work
	References

